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Estimating the ultimate limit  
state of masonry structures 

from component‍‑level criteria
Określanie warunku zniszczenia muru na podstawie granicznych  

właściwości materiałów składowych

Streszczenie. W artykule zaprezentowano wykorzystanie analizy 
granicznej z dyskretyzacją elementami skończonymi do wyzna-
czania wytrzymałości konstrukcji murowej. Stan graniczny okre-
ślono w postaci oszacowań: górnego i dolnego. Analizy ograni-
czono do zadania 2D w płaskim stanie naprężenia. Wyniki zostały 
zaprezentowane w postaci powierzchni granicznych w przypadku 
różnych kątów odchylenia osi naprężeń głównych od kierunków 
materiałowych muru. Wykazano, że zaproponowane podejście 
do sformułowania makroskopowego kryterium wytrzymałości 
muru jest efektywne obliczeniowo w porównaniu z analizą me-
todą elementów skończonych (MES) i może być z powodzeniem 
stosowane do tego celu.
Słowa kluczowe: analiza graniczna; homogenizacja wytrzyma-
łości; mur; kompozyt; komórka periodyczności.

Abstract. The article presents the application of Finite Element 
Limit Analysis (FELA) for assessing the strength of masonry 
structures. The limit state is determined using both upper and 
lower bound estimates. The analyses are restricted to a  two­
‍‑dimensional plane stress problem. The results are presented 
as limit surfaces corresponding to various orientations of the 
principal stress axes relative to the masonry material directions. 
The study shows that the proposed approach to the macroscopic 
formulation of a masonry strength criterion is computationally 
efficient compared to conventional Finite Element Method (FEM) 
simulations. Moreover, it can be effectively employed for defining 
failure criteria in other classes of composite materials.
Keywords: limit analysis; strength homogenization; masonry; 
composite; periodic cell.
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Mury są problematyczne w analizie numerycznej. 
Wynika to z faktu silnej niejednorodności mate-
riału. Mur składa się bowiem z cegieł lub blocz-
ków oraz zaprawy, czyli składników o  różnych 

właściwościach mechanicznych. Może być klasyfikowany 
jako kompozyt. Ze względu na ograniczenia obliczeniowe, 
składniki muru nie mogą być bezpośrednio odwzorowane 
w  modelu numerycznym. Konieczna jest zatem technika, 
która pozwoli na określenie efektywnych właściwości ma-
teriału, aby w analizie numerycznej, np. metodą elementów 
skończonych (MES), mógł być on modelowany jako ośrodek 
jednorodny.

Oceny efektywnych właściwości kompozytów w przypadku 
ich zastosowania w praktyce można dokonać za pomocą tech-
nik homogenizacji. Pod tym pojęciem kryją się metody po-
zwalające na przejście od opisu materiału ze skali mikro, do 
skali makro. W przypadku muru oznacza to przejście od skali 
obserwacji fragmentu ściany, kiedy rozróżniamy cegły i za-
prawę, do skali całego budynku, gdzie materiał muru modelu-
jemy jako jednorodny. Parametry mechaniczne kompozytów 
określa się, analizując reprezentatywną elementarną objętość 
(REO), czyli taki fragment struktury, który zawiera pełną in-
formację na temat właściwości i geometrii składników. Sposób, 
w jaki wyznacza się REO, różni się w zależności od rodzaju 
analizowanego kompozytu. W przypadku kompozytów perio-
dycznych, charakteryzujących się uporządkowaną, powtarzalną 
strukturą, wyznaczenie REO jest proste. Odpowiada ono tzw. 
komórce periodyczności, czyli najmniejszemu powtarzalnemu 

The numerical analysis of masonry structures can be 
difficult due to the significant heterogeneity of the 
material. A wall made of bricks or blocks and mor-
tar, which are components with different mechanical 

properties, can be classified as a composite. Because of com-
putational limitations, the components of masonry cannot be 
directly represented in a numerical model, so it is necessary 
to use a technique that determines the effective properties of 
the material so it can be modelled as a homogeneous medium, 
such as in finite element analysis (FEA).

The effective properties of composites are typically deter-
mined using homogenisation techniques, which enable the 
transition from a micro‍‑scale description of a heterogeneous 
medium to a macro‍‑scale representation of a homogenised me-
dium. In the case of masonry, this means moving from the scale 
of a wall segment, where bricks and mortar are distinguished, 
to the scale of the entire structure, where the material can be 
treated as homogeneous. The mechanical parameters are de-
rived from a representative elementary volume (REV), which 
contains complete information about the constituents and their 
geometry. In the case of periodic composites – characterised by 
an ordered, repetitive structure – the REV corresponds to the 
periodic cell, i.e. the smallest repeating unit of the composite. 
Masonry, owing to the regular arrangement of bricks, is com-
monly classified within this category [1, 2].
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fragmentowi kompozytu. Mur, ze względu na regularny układ 
cegieł, zaliczany jest do tej grupy [1, 2]. W analizie numerycz-
nej stanu granicznego nośności obiektów w technologii  muru 
ceglanego, konieczne jest przede wszystkim przyjęcie odpo-
wiedniego makroskopowego kryterium wytrzymałości mate-
riału. Wyznaczenie takiego kryterium w przypadku muru jest 
złożonym zagadnieniem i stanowi przedmiot wielu badań na-
ukowych [3÷5].

Jedną z metod określania makroskopowego kryterium wy-
trzymałości jest analiza wytrzymałości komórki periodyczno-
ści (przy założeniu sprężysto‍‑plastycznego modelu materiału 
składników) z wykorzystaniem MES [1, 6]. Podejście to po-
zwala na precyzyjne wyznaczenie granicznego stanu naprę-
żenia w komórce, ale wiąże się z wysokim kosztem oblicze-
niowym, szczególnie wobec konieczności analizowania wielu 
programów obciążenia w celu dyskretnego określenia kryte-
rium. Dodatkowym wyzwaniem jest anizotropia kryterium, 
tj. zależność jego kształtu od kąta pomiędzy głównymi kie-
runkami obciążenia a kierunkami materiałowymi. W artykule 
przedstawiono alternatywne podejście do szacowania wytrzy-
małości konstrukcji murowej na podstawie analizy granicznej 
z dyskretyzacją elementami skończonymi (ang. Finite Element 
Limit Analysis – FELA). Metoda FELA polega na sformułowa-
niu zagadnienia jako stanu granicznego w ujęciu dyskretnym 
oraz zapisaniu go w postaci problemu optymalizacji wypukłej. 
Takie podejście umożliwia nie tylko uzyskanie dużej dokład-
ności wyników w postaci rygorystycznych, z matematycznego 
punktu widzenia, oszacowań warunku stanu granicznego, ale 
również pozwala na znaczne skrócenie czasu obliczeń w po-
równaniu z tradycyjnymi metodami MES. Celem pracy była 
ocena przydatności metody FELA do określenia anizotropo-
wego warunku granicznego muru ceglanego rozumianego jako 
kompozyt periodyczny.

Metoda FELA
Do oceny makroskopowego kryterium wytrzymałości wyko-

rzystano metodę FELA, która, choć do dyskretyzacji geometrii 
zadania wykorzystuje elementy skończone, to w swej istocie 
bazuje na ścisłych matematycznie twierdzeniach o szacowaniu 
górnym (OG) lub dolnym (OD) stanu granicznego w dowolnym 
zagadnieniu brzegowym. W tym ujęciu stan graniczny odpo-
wiada sytuacji, w której przy pewnym założonym programie 
obciążenia niemożliwe jest jego dalsze zwiększanie. Dopro-
wadzi to do powstania mechanizmu zniszczenia i nieograni-
czonego płynięcia plastycznego.

Stan graniczny można oszacować z góry i z dołu. OD polega 
na znalezieniu obciążenia krytycznego, w przypadku którego 
istnieje statycznie dopuszczalne pole naprężenia w murze. Musi 
ono spełniać warunki równowagi, warunki ciągłości wektora 
naprężenia na granicy tych stref oraz naprężeniowe warunki 
brzegowe. Ponadto w każdym punkcie pola musi być speł-
niony lokalny warunek wytrzymałości. Znaleziona przy takich 
założeniach wartość obciążenia jest mniejsza niż rzeczywista 
wartość krytyczna, co oznacza, że OD można nazywać osza-
cowaniem bezpiecznym (konserwatywnym). Oczywiście spo-
śród wartości bezpiecznych interesuje nas taka, która szacuje 

The numerical analysis of the ultimate load‍‑bearing capacity 
of brick structures requires, particularly, the assumption of an 
appropriate macroscopic strength criterion, the determination of 
which has been the subject of numerous scientific studies [3÷5].

One of the methods for determining this criterion is the anal-
ysis of the strength of the periodicity cell (assuming an elastic­
‍‑plastic model of the material components) using FEM [1, 6]. 
Such an approach offers the possibility of precise determina-
tion of the limit stress state in the cell, but it is associated with 
high computational costs, especially considering the necessity 
to analyse numerous load programmes to specify the criterion 
discretely. An additional challenge is the anisotropy of the cri-
terion, depending on the angle between the main load direc-
tions and the material directions.

The paper presents an alternative approach to estimating the 
ultimate load‍‑bearing capacity of masonry structures based on 
finite element limit analysis (FELA). This method is based on 
formulating the problem as a limit state in discrete terms and 
expressing it as a convex optimisation problem. This approach 
provides not only high accuracy of results in the form of math-
ematically rigorous estimates, but also significantly reduces the 
calculation time compared to FEM. This work aims to assess 
the applicability of this method for determining the anisotropic 
limit state of a brick wall considered as a periodic composite.

FELA method
To evaluate the macroscopic strength criterion, the FELA 

method has been used. Although employing finite elements for 
the discretisation of the task geometry, it is based on mathemat-
ically rigorous theorems concerning the upper (UB) or lower 
(LB) bound estimation of the limit state in any boundary prob-
lem. According to this approach, the limit state corresponds to 
a situation during which, for a given load programme, it is im-
possible to increase the load any further, since it will produce 
a failure mechanism and unlimited plastic flow.

The limit state can be estimated from both below and above. 
The lower bound (LB) approach involves searching for the 
critical load for which a statically admissible stress field ex-
ists. This is a field that satisfies equilibrium, continuity, and 
stress boundary conditions. Moreover, at every point in the 
field, the local strength criterion must also be fulfilled. The 
load value obtained under these assumptions is lower than 
the actual critical value, which means that LB provides a safe 
(conservative) estimate. Among such estimates, the most rel-
evant is the one that represents the limit condition as accurately 
as possible, namely the maximum admissible load value. To 
determine this, it is necessary to optimise the stress distribu-
tion [7]. Conversely, the upper bound (UB) approach is based 
on the principle of virtual work, whereby the limit load corre-
sponds to an assumed failure mechanism (a kinematically ad-
missible displacement velocity field). Such a mechanism must 
satisfy the displacement boundary conditions and also remain 
kinematically compatible; that is, individual blocks may not 
overlap but may only slide relative to one another (in accord-
ance with the associated plastic flow rule). Furthermore, if the 
blocks deform, any induced stresses must satisfy the plasticity 
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warunek graniczny możliwie dokładnie, tj. maksymalna war-
tość obciążenia. Do jej określenia konieczna jest odpowiednia 
optymalizacja rozkładu naprężenia [7]. OG polega na okre-
śleniu obciążenia granicznego odpowiadającego przyjętemu 
mechanizmowi zniszczenia (kinematycznie dopuszczalnemu 
polu prędkości przemieszczeń), metodą prac wirtualnych. Me-
chanizm taki musi spełniać przemieszczeniowe warunki brze-
gowe i być kompatybilny, tj. poszczególne bloki nie mogą na 
siebie nachodzić, a jedynie przesuwać się po sobie wzajemnie 
(z uwzględnieniem stowarzyszonego prawa plastycznego pły-
nięcia). Ponadto, jeśli bloki się odkształcają, wyindukowane 
naprężenia muszą spełniać warunek plastyczności. Znaleziona 
wartość obciążenia jest w takiej sytuacji zawsze większa niż 
wartość krytyczna, przy czym mechanizm optymalizuje się 
w celu określenia dokładnego oszacowania, tj. minimalnej war-
tości obciążenia. Graficzną reprezentację oszacowania stanu 
granicznego przedstawiono na rysunku 1.

W metodzie FELA stan graniczny rozważa się jako problem 
dyskretny. Dzieląc domenę zadania na elementy skończone 
i traktując elementy odpowiednio jako strefy ciągłych naprężeń 
lub bloki mechanizmu, poszukiwane wartości (naprężenia lub 
prędkości przemieszczeń) jako zmienne optymalizacyjne, a do-
datkowe warunki (równowagi i ciągłości wektora albo kompa-
tybilności) jako ograniczenia, oba oszacowania można sformu-
łować jako problemy optymalizacji wypukłej. Takie podejście 
znacznie skraca czas obliczeń w porównaniu z klasycznymi 
analizami sprężysto‍‑plastycznymi MES, co wiąże się z przy-
jęciem kilku założeń, które znacznie upraszczają model, np. 

pomijana jest implementacja 
praw konstytutywnych (przyj-
muje się sztywno‍‑idealnie pla-
styczny model materiału).

Wyznaczenie stanu granicz-
nego wytrzymałości muru 
przeprowadzono w 2D, zakła-
dając płaski stan naprężenia, 
pełną periodyczność (brak lo-
kalnych imperfekcji lub zmian 
materiałowych) oraz sztywno-
-idealnie plastyczny model ma-
teriału ze stowarzyszonym pra-
wem plastycznego płynięcia. 
Kruchy charakter materiału 
uwzględniono, zakładając kry-
terium Coulomba‍‑Mohra (C­
‍‑M). Sposób wyboru komórki 
periodyczności wraz ze szcze-
gółową geometrią pokazano na 
rysunku 2. Parametry wytrzy-
małościowe w postaci kąta tar-
cia wewnętrznego φ oraz kohe-
zji c przyjęto na podstawie prac 
[1, 5], o wartościach przedsta-
wionych w tabeli.

Analizę przeprowadzono, 
wykorzystując podejścia za-
proponowane przez Lyamina 

condition. The load value obtained under these assumptions is 
always higher than the critical value, and the mechanism is op-
timised to provide the most accurate estimate, i.e. the minimum 
load value. A graphical representation of the lower‍‑ and upper­
‍‑bound approximations of the limit state is shown in Figure 1.

The FELA method defines the limit state as a discrete prob-
lem. The domain is divided into finite elements, viewed as 
zones of continuous stresses or blocks of the mechanism. The 
optimisation variables are stresses or displacement velocities, 
respectively. The conditions of equilibrium, continuity, and 
compatibility are introduced as constraints, enabling both tasks 
to be formulated as a convex optimisation problem. This ap-
proach significantly reduces the calculation time compared to 
classical elastic‍‑plastic FEM analyses, which is related to model 
simplification, such as omitting the implementation of constitu-
tive laws (a rigid‍‑perfectly plastic material model is assumed).

The ultimate limit state of the wall has been determined 
by assuming a plane stress state, complete periodicity of the 
structure (no local imperfections or material variations), peri-
odic boundary conditions, and a perfectly rigid‍‑plastic mate-
rial model with an associated plastic flow rule. The brittle be-
haviour of the components has been modelled by applying the 
Mohr‍‑Coulomb (MC) criterion. The method for selecting the 
periodicity cell, along with its detailed geometry, is illustrated 
in Figure 2. The strength parameters, expressed as the internal 
friction angle (φ) and cohesion (c), have been adopted based 
on studies [1, 5]. The values are shown in Table.

The analysis has been carried out using the approaches pro-
posed by Lyamin and Sloan 
[8] (LB) and Makrodimopou-
los and Martin [9] (UB). The 
LB solution employed linear 
stress field shape functions, 
while the UB solution utilised 
quadratic displacement veloc-
ity field shape functions.

Both problems can be ex-
pressed as convex optimisa-
tion problems. In optimisation 
theory, there exists the concept 
of a dual formulation, which 
involves presenting a given 
problem in an alternative form 
– usually by converting a maxi-
misation problem into a mini-
misation (or vice versa). This 
often provides a different per-
spective on the problem. In 
many cases, the solutions to 
the primal and dual problems 
are identical (strong duality) or 
only approximate (weak dual-
ity). Importantly, one of these 
formulations may be much eas-
ier to solve than the other.

To the problems of LB and 
UB, it is possible to formu-

Fig. 2. Selection and dimensions of periodic cell
Rys. 2. Dobór komórki i wymiary periodyczności
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i Sloana [8] do wyznaczenia 
OD oraz Makrodimopoulosa 
i Martina [9] do OG. W roz-
wiązaniu OD zastosowano 
liniowe funkcje kształtu pola 
naprężenia, natomiast w OG – 
kwadratowe funkcje kształtu 
pola prędkości przemieszczeń. 

Metoda FELA formułuje oba rozwiązania jako problemy 
optymalizacji wypukłej. W teorii optymalizacji istnieje poję-
cie sformułowania dualnego, które polega na przedstawieniu 
danego problemu w alternatywnej formie – zazwyczaj przez 
zamianę problemu maksymalizacji na problem minimalizacji 
(lub odwrotnie). Często pozwala to spojrzeć na zagadnienie 
„z drugiej strony”. W wielu przypadkach rozwiązania prob-
lemu prymalnego i dualnego są identyczne (silna dualność) 
lub tylko zbliżone (słaba dualność). Jedno z tych sformuło-
wań może być znacznie łatwiejsze do rozwiązania niż drugie.

W przypadku zagadnień OD i OG można sformułować sil-
nie dualne problemy, które mają identyczne rozwiązania [10]. 
Problem dualny do OD polega na poszukiwaniu mechanizmu 
zniszczenia (spełniającego nieco inne warunki niż wynikający 
z OG), natomiast problem dualny do OG polega na poszuki-
waniu dopuszczalnego rozkładu naprężeń (spełniającego inne 
ograniczenia niż ten stowarzyszony z OD). W artykule oba 
zagadnienia przedstawiono w postaci statycznej, tj. w postaci 
zagadnienia maksymalizacyjnego, ponieważ OG jest łatwiej-
sze do rozwiązania w tej postaci [11] i w rezultacie można je 
zapisać jako [12, 13]:

Maksymalizuj 
α 

przy założeniu:

	 BTσ = αp + p0�  

	 f (σe)k ≤ 0 ∀ e = 1, 2,…, ne� (1)

gdzie:
α – poszukiwany mnożnik wartości obciążenia;
σe – wektor naprężeń w narożach wszystkich elementów analizowanego 
obszaru (różny w analizie OD i OG), a macierz B zawiera współczynniki 
równań równowagi statycznej, ciągłości naprężeń oraz warunki brzegowe, 
które różnią się znacznie w analizie granicznej OD i OG. Wektory p i p0 
zawierają zoptymalizowane i stałe obciążenie. Warunek f(σe)k to lokalny 
warunek stanu granicznego, w tym przypadku założony jako warunek 
C‍‑M przy danych parametrach, zapisany w postaci stożkowego ograni-
czenia kwadratowego [10].

Wzór (1) jest ogólny i nadaje się do rozwiązywania róż-
nych typowych zagadnień brzegowych [13], ale w przypadku 
kompozytów periodycznych, tj. np. muru, konieczne jest jego 
uszczegółowienie. W tym celu przyjęto warunki brzegowe pe-
riodyczności, tj. specyficzne warunki brzegowe zakładające 
równość pomiędzy naprężeniami na przeciwległych brzegach 
komórki oraz postulowano ograniczenia całkowe wyrażające 
zgodność pomiędzy całkami z naprężeń w obrębie komórki 
periodyczności (naprężeniami na poziomie mikro) a ich ma-
kroskopowymi odpowiednikami.

	 σij = ∫A σe
ij dA� (2)

late strongly dual problems 
that are identical in their solu-
tions [10]. The dual problem 
to LB corresponds to searching 
for a failure mechanism sub-
ject to slightly different con-
ditions from those imposed in 
UB, while the dual problem to 
UB corresponds to searching for an admissible stress distri-
bution (satisfying different constraints from those associated 
with LB). This study describes both problems in static form, 
i.e. as maximisation problems, because UB is easier to solve 
specifically in this particular representation [11]. As a result, 
both problems can be written as Equation (1) [12, 13]:

Maximize 
α 

Subject to:

	 BTσ = αp + p0�  

	 f (σe)k ≤ 0 ∀ e = 1, 2,…, ne� (1)

where
α – the desired load value multiplier, 
σe – the stress vector at the corners of all elements of the analysed area 
(different for LB and UB), 
matrix B contains the coefficients of static equilibrium equations, stress 
continuity and boundary conditions, which differ significantly for LB and 
UB limit analysis. The vectors p i p0 contain the optimised and constant 
load, respectively. The condition f (σe) k represents the local limit state con-
dition, in this case assumed as the C‍‑M criterion for the given parameters, 
written in the form of a second‍‑order cone constraint [10].

The formulation (1) is general and suitable for solving vari-
ous standard boundary problems [13], but in the case of pe-
riodic composites (e.g. a wall), it is necessary to specify it in 
more detail. For this purpose, periodicity boundary conditions 
were adopted, i.e. specific boundary conditions assuming equal-
ity between stresses on opposite edges of the cell, and integral 
constraints were postulated expressing the compatibility be-
tween stress integrals within the periodicity cell (micro‍‑level 
stresses) and their macroscopic counterparts. This condition is 
expressed in equation (2).

 
	 σij = ∫A σe

ij dA� (2)

Both of these conditions were taken into account by modify-
ing matrix B (the number of variables was increased by global 
stresses, i.e. three individual values for the entire cell).

Additionally, to take into account the anisotropy of the cri-
terion, expected due to the privileged directions present in the 
structure, the components of the stress tensor were expressed 
by principal stress values and the angle of deviation of their 
orientations from the material direction β defined in Figure 3.

Finally, within the LB, the maximum value of one of the two 
principal stresses was investigated under the assumed load pro-
gramme defined by the angle ρ, which determines their mu-
tual relationship (see Figure 1) at a given anisotropy angle β. 
Similarly, in the case of the UB, the minimum value of one of 

Strength parameters of masonry components
Parametry wytrzymałości składników muru

Material /Materiał c [MPa] φ [°]

Brick/Cegła 4.35 30

Mortar/Zaprawa 0.35 40
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Oba typy warunków uwzględniono przez modyfikację ma-
cierzy B (liczbę zmiennych zwiększono o naprężenia globalne, 
tj. trzy pojedyncze wartości dla całej komórki). Dodatkowo, 
aby uwzględnić anizotropię kryterium spodziewaną ze względu 
na występujące kierunki uporządkowania w strukturze, skła-
dowe wartości tensora naprężenia wyrażono przez wartości 
główne oraz kąt odchylania ich kierunków od kierunku mate-
riałowego β zdefiniowany na rysunku 3.

Ostatecznie w ramach OD poszukiwano maksymalnej war-
tości jednego z dwóch naprężeń głównych przy założonym 
programie obciążenia, zdefiniowanym przez kąt p określa-
jący ich wzajemną relację (rysunek 1) przy zadanym kącie 
anizotropii. Analogicznie, w przypadku OG poszukiwano mi-
nimalnej wartości jednego z naprężeń głównych. Rozwiązań 
tych poszukiwano za pomocą własnego skryptu zapisanego 
w programie MATLAB, wykorzystując komercyjne oprogra-
mowania MOSEK.

Wyniki
Celem badań było określenie makroskopowej powierzchni 

granicznej muru. Powierzchnie te określano w sposób dyskretny, 
rozwiązując 360 programów obciążenia zdefiniowanych wartoś-
cią kąta ρ (ρ ∈ [1°,  360°], ∆ ρ = 1°). W celu uwzględnienia ani-
zotropii rozpatrzono cztery różne orientacje naprężeń głównych 
względem kierunków materiałowych. Kąty β wynosiły odpo-
wiednio 0°, 15°, 30°, 45°. Powierzchnie graniczne dolnego oraz 
górnego oszacowania zaprezentowano na rysunku 4. Kolorem 
pomarańczowym oznaczono wyniki uzyskane w ramach OD, 
kolorem niebieskim – OG. W przypadku prostych programów 
obciążenia rozwiązania określono również analitycznie. Analiza 
wykazała zgodność uzyskanych wyników z tymi wartościami, 
tj. np. wytrzymałość muru na jednoosiowe ściskanie lub rozcią-
ganie w kierunku pionowym (prostopadłym do ciągłej spoiny) 
odpowiada wytrzymałości zaprawy. Zaobserwowano również, 
że w przypadku kąta β = 0° wytrzymałość muru przy jednoosio-
wym ściskaniu/rozciąganiu w kierunku pionowym jest prawie 
dwukrotnie mniejsza niż w kierunku poziomym.

Na przedstawionych powierzchniach stanu granicznego za-
uważalna jest wcześniej wspomniana anizotropia – kształt po-
wierzchni różni się w zależności od orientacji naprężeń głów-
nych. Co ciekawe, wraz ze wzrostem kąta β maleje przestrzeń 
ograniczona warunkiem dla obu oszacowań. Oznacza to w prak-
tyce, że największa wytrzymałość konstrukcji murowej jest uzy-
skiwana w przypadku orientacji naprężeń głównych, zgodnej 
z kierunkami materiałowymi. Pomiędzy rozwiązaniami OD 
i OG, w wielu programach obciążenia, zauważalna jest różnica 
w oszacowaniach wynikająca ze sposobu dyskretyzacji modelu. 
Rzeczywista powierzchnia graniczna znajduje się pomiędzy po-
wierzchnią OD a powierzchnią OG. Różnicę w oszacowaniach 
można efektywnie zmniejszyć przez zastosowanie algorytmów 
adaptacyjnego zagęszczania siatki [12], co planujemy uwzględ-
nić w przyszłych badaniach. Do czasu ulepszenia oszacowania, 
chcąc wykorzystać kryterium do analizy konstrukcji murowych, 
należy korzystać z konserwatywnej wartości OD.

Czas obliczeń pojedynczych zadań jest stosunkowo krótki, 
co jest główną zaletą zastosowanej metody, w przypadku siatek 

the principal stresses was being searched for. These solutions 
were investigated using a self‍‑written script in MATLAB, uti-
lising commercial software MOSEK.

σ1σ2

β

Fig. 3. Orientation of principal stresses
Rys. 3. Orientacja naprężeń głównych

Results
The study aimed to determine the LB and UB of the mac-

roscopic limit state surface of the wall. These surfaces were 
determined discretely for 360 load programmes defined by 
the angle value ρ (ρ ∈ [1°, 360°], Δρ = 1°) and four principal 
stress orientations relative to the material directions (β = 0°, 
15°, 30°, 45°). The LB and UB limit surfaces are shown in 
Figure 4. The results obtained within the LB are marked in 
orange, while those obtained within the UB are marked in 
blue. In simple cases of load programmes, the results were 
in accordance with analytical solutions. The strength of the 
wall in uniaxial compression or tension in the vertical direc-
tion (perpendicular to the continuous joint) corresponds to the 
strength of the mortar. It was also observed that, at β = 0°, 
the strength of the wall in uniaxial compression/tension in 
the vertical direction is approximately twice as low as in the 
horizontal direction.

The limit surfaces confirm anisotropy – their shape changes 
with the orientation of the principal stresses. As the angle β in-
creases, the permissible area decreases, which means that the 
highest strength occurs when the principal directions of the 
stresses and the material directions are aligned.

A difference in estimates resulting from the model discreti-
sation method is noticeable between LB and UB solutions for 
many load programmes. The actual limit surface lies between 
them. The difference in estimates can be effectively reduced 
by using adaptive mesh refinement algorithms [12], which the 
authors intend to explore in future research. Until such improve-
ments are made, a conservative (safe) LB should be adopted 
for the analysis of masonry structures.

The calculation time for individual tasks is relatively small, 
which is the main advantage of the applied method. In the 
case of meshes consisting of approximately 2,200 finite ele-
ments, the analysis of a one load programme, performed on 
a single 4.5 GHz processor core, takes approximately 2 sec-
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składających się z ok. 2200 elementów skończonych, analiza 
pojedynczego kierunku obciążenia, wykonywana na jednym 
rdzeniu procesora o taktowaniu 4,5 GHz, trwa ok. 2 s (720 s 
całej powierzchni). Czas ten można istotnie skrócić przez za-
stosowanie obliczeń równoległych. W przypadku typowych 
murów efektywność metody FELA można dodatkowo zwięk-
szyć, stosując specyficzne komórki periodyczności z przesu-
nięciem periodyczności, jak pokazano w pracy [5]. Metoda 
FELA, stosowana do wyznaczania stanu granicznego wytrzy-
małości materiału kompozytowego, cechuje się bardzo dużą 
wydajnością obliczeniową w porównaniu z klasyczną metodą 
elementów skończonych. Tym samym, o ile zastosowanie jej 
jednorazowo do uzyskania powierzchni granicznej może da-
wać ograniczone korzyści, to zwiększają się one przy jej wielo-
krotnym zastosowaniu (np. do oceny kryteriów wytrzymałości 
fragmentów muru o specyficznej innej geometrii komórki pe-
riodyczności). Metodę tę można również stosować do innych 
typów kompozytów, takich jak losowe lub losowo‍‑warstwowe 
(mury o losowym układzie kamieni).

Wnioski
W artykule zaproponowano efektywną metodę określenia 

warunku granicznego na przykładzie konstrukcji murowej. 
Wykorzystano analizę graniczną dyskretyzowaną elemen-
tami skończonymi (FELA), zarówno w postaci OD, jak i OG.

onds (720 seconds for the entire surface). This time can be sig-
nificantly reduced by using parallel computation. In the case 
of typical walls, the efficiency of the FELA method can be 
further increased by using specific cells with shifted periodic-
ity, as shown in [5]. The FELA method, used to determine the 
limit state of composite material strength, is characterised by 
very high computational efficiency compared to the classical 
FEM. Thus, while its application on a single occasion to ob-
tain a limit surface may offer limited benefits, these benefits 
increase with repeated use (e.g. to assess the strength criteria of 
wall fragments with a specific, different periodicity cell geom-
etry). This method can also be applied to other types of com-
posites, such as random or random‍‑layered composites (walls 
with a random arrangement of stones).

Summary
The article proposes an effective method for determining 

the limit condition using the example of a masonry structure. 
Finite element limit analysis (FELA) was used in both LB 
and UB forms

The results of the conducted analyses allowed the authors to 
formulate the following conclusions:

●● the FELA method is computationally efficient for deter-
mining the limit state and can be successfully used for strength 
analysis of composite materials;
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Fig. 4. Upper and lower estimations of limit state surface
Rys. 4. Powierzchnie stanu granicznego dolnego i górnego oszacowania
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Wyniki przeprowadzonych analiz pozwoliły sformułować 
następujące wnioski:

●● metoda FELA jest efektywną obliczeniowo metodą wyzna-
czania stanu granicznego i z powodzeniem może być stosowana 
do analizy wytrzymałościowej materiałów kompozytowych;

●● największa wytrzymałość konstrukcji murowej jest uzy-
skiwana, gdy kierunki osi naprężeń głównych są zgodne z kie-
runkami materiałowymi;

●● pomiędzy rozwiązaniami OD i OG występuje różnica 
w pewnych programach obciążenia. Jest ona wynikiem dys-
kretyzacji modelu. W przyszłych badaniach planuje się wyko-
rzystanie adaptacyjnych algorytmów zagęszczania siatki w celu 
zmniejszenia błędu pomiędzy rozwiązaniami;

●● rzeczywista powierzchnia graniczna znajduje się pomię-
dzy powierzchnią OD a powierzchnią OG. Podejściem konser-
watywnym (bezpiecznym) jest jednak przyjmowanie wartości 
wytrzymałości na podstawie OD;

●● metoda FELA może być wykorzystana do wyznacza-
nia stanu granicznego zarówno kompozytów periodycznych, 
jak i innych typów kompozytów, np. losowych lub losowo­
‍‑warstwowych;

●● planuje się opracowanie algorytmu pozwalającego na bez-
pośrednie wykorzystanie metody w praktycznych zadaniach.

●● the greatest strength of a masonry structure is achieved 
when the directions of the principal stress axes are consistent 
with the material direction;

●● there is a difference between LB and UB solutions in cer-
tain load programmes. This is a result of model discretisation. 
Future research plans to use adaptive mesh refinement algo-
rithms to reduce the error between solutions;

●● the actual limit state surface is located between the LB 
and UB surfaces. The safe approach is to assume the strength 
value based on LB;

●● the FELA method can be used to determine the limit state 
of either periodic or other types of composites, e.g. random or 
random‍‑layered;

●● the development of an algorithm allowing for the direct 
application of the method in practical problems is under study.
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