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Assessment of Steel Reinforcement  

in Concrete
Wpływ struktury sieci bayesowskich na ocenę zagrożenia korozją 

stalowego zbrojenia w betonie

Abstract: Four Bayesian network models (SB‍‑1, SB‍‑2a, SB‍‑2b, 
SB‍‑2c) for assessing reinforcement corrosion probability in 
concrete were compared. Seven corrosion parameters were 
considered: potential; resistivity; chlorides; pH; corrosion current; 
charge transfer resistance; cracking. Monte Carlo simulations 
for three threat scenarios (low, medium, high) demonstrated the 
superiority of model SB‍‑2c – highest accuracy and flexibility. 
Model SB‍‑2c was identified as optimal for corrosion diagnostics 
of reinforced concrete.
Keywords: concrete structures; corrosion of reinforcement; 
diagnostics; criteria for assessing corrosion in reinforced concrete; 
Bayesian networks.

Streszczenie: Porównano cztery modele sieci bayesowskich 
(SB­‍‑1, SB­‍‑2a, SB­‍‑2b, SB­‍‑2c) oceniające prawdopodobieństwo 
korozji zbrojenia w betonie. Uwzględniono siedem parametrów 
korozyjnych: potencjał; rezystywność; chlorki; pH; prąd korozyj-
ny; opór przeniesienia ładunku; zarysowanie. Symulacje Monte 
Carlo dotyczące trzech scenariuszy zagrożenia (niskie, średnie, 
wysokie) wykazały przewagę modelu SB­‍‑2c – największą do-
kładność i elastyczność. Wskazano model SB­‍‑2c jako optymalny 
w diagnostyce korozyjnej żelbetu.
Słowa kluczowe: konstrukcje betonowe; korozja zbrojenia; diag-
nostyka; kryteria oceny korozji w żelbecie; sieci bayesowskie.
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Sieci bayesowskie, zwane także sieciami przekonań, 
stanowią probabilistyczne modele graficzne oparte na 
twierdzeniu Bayesa, sformułowanym przez Thomasa 
Bayesa w XVIII wieku [1]. Nowoczesne podejście do 

sieci bayesowskich rozwinął Judea Pearl [2] w latach osiem-
dziesiątych XX wieku, co umożliwiło formalne ujęcie wnio-
skowania warunkowego i zapoczątkowało ich powszechne 
zastosowanie [3÷5]. Modele budowane są w  formie acy-
klicznych grafów skierowanych, gdzie węzły reprezentują 
zmienne, a strzałki – zależności przyczynowo­‍‑skutkowe usta-
lane na podstawie tablic prawdopodobieństw warunkowych. 
Taka struktura pozwala na łączenie wiedzy eksperckiej z da-
nymi empirycznymi, co jest nieocenione w analizie złożo-
nych systemów.
Sieci bayesowskie znalazły zastosowanie m.in. w diagnostyce 

medycznej, ekonomii, zarządzaniu procesami produkcyjnymi 
oraz w inżynierii, gdzie wykorzystywane są do analizy stanów 
technicznych obiektów [1, 6, 7]. W kontekście oceny zagrożenia 
korozją konstrukcji żelbetowych, sieci te umożliwiają probabi-
listyczne określenie ryzyka na podstawie istotnych parametrów, 
takich jak stopień karbonatyzacji, zawartość chlorków, grubość 
otuliny, wilgotność czy temperatura betonu [8, 9]. Metody te, 
wspierane przez algorytmy uczenia, pozwalają na dynamiczne 
aktualizowanie modelu na podstawie nowych danych pomiaro-
wych, co znacznie usprawnia prognozowanie inicjacji korozji 
i planowanie działań konserwacyjnych. Dodatkowo, zastoso-
wanie sieci bayesowskich umożliwia przeprowadzenie analizy 

Bayesian networks, also referred to as belief networks, 
are probabilistic graphical models based on Bayes’ the-
orem, formulated by Thomas Bayes in the 18th century 
[1]. The modern approach to Bayesian networks was 

developed by Judea Pearl [2] in the 1980s, enabling the formali-
zation of conditional inference and initiating their widespread 
application [3÷5]. The models are constructed in the form of di-
rected acyclic graphs, where nodes represent variables and ar-
rows denote cause‍‑and‍‑effect relationships, established on the 
basis of conditional probability tables. Such a structure allows 
for the integration of expert knowledge with empirical data, 
which is invaluable in the analysis of complex systems.

Bayesian networks have found applications in, among 
others, medical diagnostics, economics, production process 
management, and engineering, where they are used for ana-
lyzing the technical condition of structures [1, 6, 7]. In the 
context of assessing the corrosion risk of reinforced concrete 
structures, these networks enable a probabilistic determi-
nation of risk based on key parameters, such as the degree 
of carbonation, chloride content, concrete cover thickness, 
moisture, and temperature [8, 9]. These methods, supported 
by learning algorithms, allow for the dynamic updating of 
the model based on new measurement data, significantly im-
proving the forecasting of corrosion initiation and the plan-
ning of maintenance actions. Furthermore, the application 
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wrażliwości, która wskazuje czynniki mające kluczowy wpływ 
na degradację konstrukcji.
W artykule podjęto próbę analizy, w jaki sposób struktura oraz 

współczynniki eksperckie w sieciach bayesowskich mających 
taką samą liczbę węzłów (parametrów) wpływają na ocenę ry-
zyka korozji zbrojenia w betonie.

Modele sieci bayesowskich do diagnostyki 
korozyjnej żelbetu

Zbudowano cztery modele bayesowskie oznaczone symbolami 
SB-1, SB-2a, SB-2b oraz SB-2c, których celem było oszacowa-
nie prawdopodobieństwa wystąpienia korozji zbrojenia w beto-
nie na podstawie siedmiu parametrów: potencjału korozyjnego 
zbrojenia E; rezystywności betonu otuliny R; zawartości chlor-
ków w betonie Cl; odczynu cieczy porowej betonu pH; gęstości 
prądu korozyjnego Ik w zbrojeniu; oporu przeniesienia ładunku 
Rt na granicy faz stal zbrojeniowa – ciecz porowa betonu oraz 
względnej głębokości zarysowania betonu G/c. Wymienione 
pierwsze 6 parametrów to kluczowe charakterystyki korozyjne, 
które można traktować jako miarodajne w profesjonalnie pro-
wadzonej diagnostyce stanu konstrukcji żelbetowych [10, 11]. 
Wprowadzony do modeli parametr względny G/c (iloraz głęboko-
ści rysy G i grubości otuliny c) ma również bardzo istotne znacze-
nie w akceleracji procesów degradacyjnych zbrojenia w betonie.
Węzły zbudowanych modeli bayesowskich SB-1, SB-2a, 

SB-2b, SB-2c pogrupowano w logiczne bloki w celu umoż-
liwienia hierarchicznej analizy i agregacji informacji diagno-
stycznych. Strukturę zbudowanych czterech modeli sieci bay-
esowskich pokazano na rysunku 1. W diagramach przedsta-
wiono sposób, w jaki węzły wejściowe łączą się w bloki oraz 
jak wyniki tych bloków są agregowane, aby uzyskać końcowy 
wskaźnik P(kor) określający prawdopodobieństwo wystąpienia 
korozji zbrojenia w betonie.

of Bayesian networks enables sensitivity analysis, which 
identifies the factors having a decisive impact on structural 
degradation.

Bayesian Network Models for Corrosion 
Diagnostics of Reinforced Concrete

Four Bayesian network models, denoted as SB‍‑1, SB‍‑2a, 
SB‍‑2b, and SB‍‑2c, were developed with the aim of estimat-
ing the probability of reinforcement corrosion occurrence 
in concrete based on seven parameters: reinforcement cor-
rosion potential E, concrete cover resistivity R, chloride 
content in concrete Cl, pH of concrete pore solution, corro-
sion current density Ik in the reinforcement, charge transfer 
resistance Rt at the interface between the reinforcing steel 
and the concrete pore solution, and the relative crack depth 
in concrete G/c. The first six of these parameters can be re-
garded as key corrosion characteristics that may be consid-
ered reliable indicators in professionally conducted diagnos-
tics of reinforced concrete structures [10, 11]. The relative 
parameter G/c (the ratio of crack depth G to concrete cover 
thickness c), introduced into the models, is also of substan-
tial importance in accelerating the degradation processes of 
reinforcement in concrete.
The nodes of the constructed Bayesian network models 

SB‍‑1, SB‍‑2a, SB‍‑2b, and SB‍‑2c were grouped into logical 
blocks to enable hierarchical analysis and aggregation of di-
agnostic information. The structures of the four developed 
Bayesian network models are presented in Figure 1. The 
diagrams illustrate the manner in which the input nodes are 
connected into blocks and how the results of these blocks 
are aggregated to obtain the final indicator P(corr), repre-
senting the probability of reinforcement corrosion occur-
rence in concrete.

Fig. 1. Developed Bayesian network models for assessing reinforcement corrosion probability in concrete
Rys. 1. Zbudowane modele sieci bayesowskich do oceny prawdopodobieństwa korozji zbrojenia w betonie
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W pierwszym modelu SB-1 każdy z parametrów wejścio-
wych reprezentowany jest oddzielnie, a końcowe prawdopodo-
bieństwo korozji wyznacza się wg wzoru (1), zgodnie z regułą 
noisy–OR [2], która upraszcza modelowanie wpływu wielu 
niezależnych przyczyn na wystąpienie danego efektu w sie-
ciach bayesowskich.

In the first model, SB‍‑1, each input parameter is represented 
separately, and the final corrosion probability is determined ac-
cording to equation (1) based on the noisy–OR rule [2], which 
simplifies the modelling of the influence of multiple inde-
pendent causes on the occurrence of a given effect in Bayes-
ian networks.

(1)(1)

Model SB‍‑2a assumes the grouping of parameters into three 
blocks. The first block of electrochemical measurements, ELE, 
includes the nodes P(E) and P(R), while the second block 
concerns material testing, MAT, and combines the criteria 
P(Cl) and P(pH). The third block of polarization measure-
ments, POL, relates to the corrosion rate of reinforcement in 
concrete, integrating information from P(Ik) and P(Rt). In ad-
dition, the ungrouped node G characterizes the effect of con-
crete cracking on the corrosion of steel reinforcement. The 
equations presented as formula (2) describe the method for 
determining the probability of corrosion occurrence within 
individual blocks,

Model SB2-a zakłada grupowanie parametrów w trzy bloki. 
Pierwszy blok pomiarów elektrochemicznych ELE obejmuje 
węzły P(E) oraz P(R), natomiast drugi blok dotyczy badań ma-
teriałowych MAT i łączy kryteria P(Cl) i P(pH). Trzeci blok 
pomiarów polaryzacyjnych POL wiąże się z szybkością koro-
zji zbrojenia w betonie, integrując informacje z P(Ik) i P(Rt). 
Ponadto niezblokowany węzeł G charakteryzuje wpływ zary-
sowania betonu na korozję stalowego zbrojenia. Zestawione 
w formie wzoru (2) formuły ujmują sposób wyznaczenia praw-
dopodobieństwa wystąpienia korozji w ramach poszczegól-
nych bloków

while formula (3) defines the final corrosion probability value 
in accordance with the SB‍‑2a model

In the SB‍‑2b model, in order to account for differences in 
the significance of individual blocks, expert‍‑defined reduction 
coefficients were introduced, based on laboratory research ex-
perience and in situ measurements. The ELE block was scaled 
by a coefficient of 0.50, the MAT block by a coefficient of 0.75, 
while the POL block was left without any reduction (coeffi-
cient 1.00). Taking into account the described modifications, 
the formulas for corrosion probability in the individual blocks 
take the form of equation (4)

W modelu SB-2b, w celu uwzględnienia różnic w istotno-
ści poszczególnych bloków, wprowadzono eksperckie współ-
czynniki redukcyjne bazujące na doświadczeniach laboratoryj-
nych oraz pomiarach in situ. Blok ELE został przeskalowany 
współczynnikiem 0,50, blok MAT – współczynnikiem 0,75, 
natomiast blok POL pozostawiono bez żadnej redukcji (współ-
czynnik 1,00). Uwzględniając opisane modyfikacje, formuły 
na prawdopodobieństwo korozji w poszczególnych blokach 
przyjmują postać (4)

Formuła (3) określa natomiast wartość końcową prawdopo-
dobieństwa korozji zgodnie z modelem SB­‍‑2a

while the final formula for corrosion probability in the SB‍‑2b 
model can be expressed by equation (5)

a końcowy wzór na prawdopodobieństwo korozji w modelu 
SB­‍‑2b można określić zależnością (5)

(3) (3)

(5)
× ×

(5)
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Trzeci model SB-2c zachowuje strukturę SB2b z uwzględ-
nieniem niewystępującego wcześniej w żadnym modelu wa-
runku decydującego, bazującego na realnej ocenie chwilowego 
zagrożenia korozją zbrojenia w betonie. Zgodnie ze zdefiniowa-
nym warunkiem, jeżeli wartość wynikowego prawdopodobień-
stwa bloku POL wynosi 0, czyli na podstawie pomiarów pola-
ryzacyjnych (np. LPR, EIS, GP) stwierdza się szybkość korozji 
zbrojenia wskazującą na stan pasywny, to przyjmuje się P(kor) 
= 0. W przeciwnym przypadku końcowe prawdopodobieństwo 
korozji wyznaczane jest regułą noisy–OR wg wzoru (6).

The third model, SB­‍‑2c, retains the structure of SB­‍‑2b but 
incorporates a decisive condition not previously present in any 
of the models, based on a realistic assessment of the instanta-
neous risk of reinforcement corrosion in concrete. According 
to this condition, if the resulting probability value of the POL 
block equals 0 – meaning that polarization measurements (e.g., 
LPR, EIS, GP) indicate a corrosion rate corresponding to the 
passive state – then P(corr) = 0 is assumed. Otherwise, the 
final corrosion probability is determined using the noisy–OR 
rule according to equation (6).

(6)

(6)

The diagnostic criteria related to the influence of each pa-
rameter on corrosion risk, i.e., the so‍‑called conditional prob-
ability tables (CPT – Corrosion Probability Thresholds), are 
presented in Figures 2. The figures include both the relation-
ships between the input variable and the value of the CPT func-
tion in the form of graphs, as well as in the form of formulas, 
which facilitates the rapid interpretation of the influence of 
individual criteria on the probability of corrosion occurrence.

Kryteria diagnostyczne związane z wpływem każdego z pa-
rametrów na zagrożenie korozją, czyli tzw. tablice prawdopo-
dobieństw warunkowych CPT (Corrosion Probability Thres-
holds), zostały przedstawione na rysunku 2. Umieszczono na 
nim zarówno zależności pomiędzy zmienną wejściową a war-
tością funkcji CPT w formie wykresów, a także w formie wzo-
rów, co ułatwia szybką interpretację wpływu poszczególnych 
kryteriów na prawdopodobieństwo wystąpienia korozji.
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Fig. 2. Probability characteristics of reinforcement corrosion in concrete
Rys. 2. Charakterystyki prawdopodobieństwa korozji zbrojenia w betonie
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Analiza zbudowanych modeli sieci 
bayesowskich

Parametry korozyjne i procedura symulacyjna. W celu 
obiektywnej oceny skuteczności modeli bayesowskich SB­‍‑1, 
SB­‍‑2a, SB­‍‑2b i SB­‍‑2c w predykcji prawdopodobieństwa koro-
zji zbrojenia w betonie zastosowano symulację Monte Carlo. 
Metoda ta, powszechnie stosowana w analizie złożonych sy-
stemów probabilistycznych, polega na wielokrotnym genero-
waniu losowych wartości parametrów wejściowych wg okre-
ślonych rozkładów prawdopodobieństwa, a następnie analizie 
statystycznej uzyskanych wyników [12].

Metoda Monte Carlo jest szczególnie przydatna w przy-
padku analizy modeli bayesowskich ze względu na jej zdolność 
do efektywnego badania wielowymiarowych przestrzeni para-
metrów oraz kwantyfikacji niepewności modeli [13]. W kon-
tekście predykcji korozji zbrojenia w betonie, symulacja Monte 
Carlo pozwala na kompleksową ocenę zachowania modeli 
w różnych scenariuszach środowiskowych, reprezentowanych 
przez różne zakresy parametrów wejściowych, co umożliwia 
identyfikację mocnych i słabych stron każdej z analizowanych 
sieci bayesowskich.
W celu systematycznej oceny modeli, zdefiniowano trzy sce-

nariusze odpowiadające różnym poziomom zagrożenia korozyj-
nego: NISKIE, ŚREDNIE i WYSOKIE prawdopodobieństwo 
korozji. W tabeli określono odpowiednie zakresy siedmiu kluczo-
wych parametrów korozyjnych w przypadku każdego scenariusza.

Proces próbkowania 
w  zastosowanej meto-
dzie Monte Carlo pole-
gał na losowaniu wartości 
parametrów z podanych 
zakresów przy założe-
niu rozkładu równomier-
nego wewnątrz każdego 
zakresu. W  przypadku 
każdego scenariusza wy-
generowano 10  000 lo-
sowych zestawów para-
metrów, co zapewniło 
wystarczającą wielkość 
próby do uzyskania sta-
bilnych statystycznie wy-

ników [14]. Stosując każdy wygenerowany zestaw parametrów, 
obliczono prawdopodobieństwo korozji czterech analizowanych 
modeli: SB‍‑1, SB‍‑2a, SB‍‑2b i SB‍‑2c, zgodnie ze zdefiniowa-
nymi formułami matematycznymi.

Wyniki analizy porównawczej. W celu oceny porównaw-
czej modeli przeprowadzono analizę statystyczną uzyskanych 
rozkładów prawdopodobieństwa. Rysunek 3 przedstawia po-
równanie średnich wartości prawdopodobieństwa korozji uzy-
skanych za pomocą poszczególnych modeli w przypadku trzech 
analizowanych scenariuszy korozyjnych.
W przypadku NISKIEGO prawdopodobieństwa korozji za-

obserwowano znaczną różnicę między modelami. Modele SB­‍‑1 
i SB­‍‑2a dają identyczne wartości średnie na poziomie 18,8%, 
model SB­‍‑2b wskazuje na prawdopodobieństwo korozji rzędu 
14,4%, natomiast model SB­‍‑2c wykazuje najmniejsze praw-

Analysis of the Developed Bayesian 
Network Models

Corrosion Parameters and Simulation Procedure. To ob-
jectively assess the effectiveness of the Bayesian network mod-
els SB‍‑1, SB‍‑2a, SB‍‑2b, and SB‍‑2c in predicting the probability 
of reinforcement corrosion in concrete, the Monte Carlo sim-
ulation method was applied. This method, widely used in the 
analysis of complex probabilistic systems, involves repeatedly 
generating random values of input parameters according to de-
fined probability distributions, followed by statistical analysis 
of the obtained results [12].

The Monte Carlo method is particularly useful for analyz-
ing Bayesian network models due to its ability to efficiently 
explore multidimensional parameter spaces and quantify model 
uncertainty [13]. In the context of predicting reinforcement 
corrosion in concrete, Monte Carlo simulation enables a com-
prehensive evaluation of model performance under various 
environmental scenarios, represented by different ranges of 
input parameters. This approach makes it possible to identify 
the strengths and weaknesses of each of the analyzed Bayes-
ian networks.

For the purpose of systematically evaluating the models, 
three scenarios were defined, corresponding to different lev-
els of corrosion risk: LOW, MEDIUM, and HIGH probability 
of corrosion. Table specifies the respective ranges of the seven 
key corrosion parameters for each scenario.
The sampling process 

in the applied Monte 
Carlo method involved 
drawing parameter val-
ues from the specified 
ranges, assuming a uni-
form distribution within 
each range. For each sce-
nario, 10,000 random pa-
rameter sets were gener-
ated, ensuring a  suffi-
ciently large sample size 
to obtain statistically sta-
ble results [14].

For each generated pa-
rameter set, the probabil-
ity of corrosion was calculated for the four analyzed models 
– SB‍‑1, SB‍‑2a, SB‍‑2b, and SB‍‑2c – according to the defined 
mathematical formulas.

Results of the Comparative Analysis. To perform a com-
parative evaluation of the models, a statistical analysis of the 
obtained probability distributions was conducted. Figure 3 
presents a comparison of the mean corrosion probability val-
ues obtained using each of the models for the three analyzed 
corrosion scenarios.
In the case of the LOW corrosion probability scenario, 

significant differences were observed between the mod-
els. Models SB‍‑1 and SB‍‑2a yield identical mean values at 
the level of 18.8%, while model SB­‍‑2b indicates a corro-
sion probability of approximately 14.4%, and model SB­‍‑2c 
shows the lowest probability – 7.0%. For the MEDIUM cor-

Corrosion parameter ranges adopted in the comparative analysis of Bayesian 
network models using the Monte Carlo method
Przedziały parametrów korozyjnych przyjęte w analizie porównawczej modeli sieci 
bayesowskich, z zastosowaniem metody Monte Carlo

Parameters/ 
Parametry

Probability of corrosion/Prawdopodobieństwo korozji

LOW/ 
NISKIE 

MEDIUM/ 
ŚREDNIE 

HIGH/ 
WYSOKIE 

E [mV] [–200; 0] [–350; –200] [–500; –350]

R [kOhm·cm] [20; 30] [10; 20] [1; 10]

pH [13; 14] [11.5; 13] [9; 11.5]

Cl [%] [0; 0.35] [0.35; 0.50] [0.50; 1.00]

Ik [µA/cm²] [0.01; 0.15] [0.15; 0.30] [0.30; 1.00]

Rt [kOhm·cm²] [235; 300] [125; 235] [25; 125]

G/c [0; 0.2] [0.2; 0.7] [0.7; 1.0]
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dopodobieństwo 
– 7,0%. W  przy-
padku scenariu-
sza ŚREDNIEGO 
prawdopodobień-
stwa korozji, mo-
dele SB‍‑1 i SB‍‑2a 
ponownie dają 
identyczne wyniki 
(91,4%), podczas 
gdy modele SB‍‑2b 
i  SB­‍‑2c wskazują 
na prawdopodo-
bieństwo 80,0%. 
W przypadku WY-
SOKIEGO prawdo-

podobieństwa korozji wszystkie modele przewidują pewne wy-
stąpienie korozji, z wartościami prawdopodobieństwa bliskimi 
100% (SB­‍‑1/SB­‍‑2a – 100,0%, SB­‍‑2b/SB­‍‑2c – 99,9%).
Ponadto w przypadku NISKIEGO prawdopodobieństwa ko-

rozji, model SB­‍‑2c wykazuje nie tylko najniższą średnią war-
tość, ale także największe odchylenie standardowe (7,36%) 
oraz dużą częstość (49,14%) wartości bliskich zeru (P<0,05). 
W przypadku ŚREDNIEGO prawdopodobieństwa korozji, mo-
dele SB­‍‑2b i SB­‍‑2c charakteryzują się większym rozprosze-
niem wyników (odchylenie standardowe 6,51%) niż modele 
SB­‍‑1/SB­‍‑2a (3,47%). W scenariuszu WYSOKIEGO praw-
dopodobieństwa korozji wszystkie modele mają minimalną 
zmienność i wszystkie wyniki przekraczają wartość P = 0,95.

Wpływ parametrów wejściowych modeli na predykcję 
korozji zbrojenia. W celu oceny wpływu poszczególnych pa-
rametrów modeli na predykcję korozji zbrojenia zastosowano 
technikę eliminacji parametrów. Bazuje ona na systematycznym 
badaniu wpływu poszczególnych parametrów wejściowych na 
końcową wartość prawdopodobieństwa przez sekwencyjne usu-
wanie pojedynczych parametrów i obserwację spadku prawdopo-
dobieństwa korozji zbrojenia w betonie. Matematycznie można 
to opisać formułą (7)

�  
� (7)

 
w której:
P(kor)full – prawdopodobieństwo korozji uzyskane z uwzględnieniem 
wszystkich parametrów;
P(kor)red – prawdopodobieństwo korozji modelu zredukowanego, czyli 
po usunięciu badanego parametru lub parametrów.

Przeprowadzona analiza miała na celu określenie wpływu 
siedmiu kluczowych parametrów wejściowych (E, R, pH, Cl, 
Ik, Rt, G/c) na predykcję prawdopodobieństwa korozji zbroje-
nia w betonie w przypadku modeli bayesowskich SB‍‑1, SB‍‑2a, 
SB­‍‑2b i SB­‍‑2c w trzech różnych scenariuszach korozyjnych. 
Badanie ujawniło istotne zależności między parametrami wej-
ściowymi a końcowym prawdopodobieństwem korozji, które 
różnią się znacznie w zależności od rozpatrywanego scenariu-
sza. Jak pokazano na rysunku 4, ważność pojedynczych parame-
trów wykazuje wyraźny trend zależny od scenariusza. W przy-

rosion probability 
scenario, models 
SB‍‑1 and SB‍‑2a 
again produce 
identical results 
(91.4%), whereas 
models SB‍‑2b 
and SB‍‑2c indi-
cate lower prob-
abilities (80.0%). 
In the HIGH cor-
rosion probability 
scenario, all mod-
els predict an al-
most certain oc-
currence of corro-
sion, with probability values close to 100% (SB­‍‑1/SB­‍‑2a: 
100.0%, SB­‍‑2b/SB­‍‑2c: 99.9%).
Moreover, for the LOW corrosion probability scenario, 

model SB‍‑2c exhibits not only the lowest mean value but 
also the highest standard deviation (7.36%) and a substan-
tial frequency (49.14%) of values close to zero (P<0.05). 
For the MEDIUM corrosion probability scenario, models 
SB‍‑2b and SB‍‑2c are characterized by greater dispersion of 
results (standard deviation 6.51%) compared to models SB­‍‑1/
SB­‍‑2a (3.47%). In the HIGH corrosion probability scenario, 
all models show minimal variability, and all results exceed 
the value P = 0.95.

Influence of Model Input Parameters on the Prediction 
of Reinforcement Corrosion. To evaluate the impact of indi-
vidual model parameters on the prediction of reinforcement 
corrosion, a parameter elimination technique was applied. 
This method is based on systematically assessing the influ-
ence of each input parameter on the final probability value 
by sequentially removing individual parameters and observ-
ing the decrease in the predicted probability of reinforcement 
corrosion in concrete. Mathematically, this can be expressed 
by equation (7).

�  
� (7) 

where:
P(corr)full denotes the corrosion probability obtained when all parame-
ters are taken into account, P(corr)red denotes the corrosion probability 
of the reduced model, i.e., after removing the parameter or parameters 
under examination.

The analysis was conducted to determine the influence of 
seven key input parameters (E, R, pH, Cl, Ik, Rt, G/c) on the 
prediction of reinforcement corrosion probability in concrete 
for the Bayesian network models SB‍‑1, SB‍‑2a, SB‍‑2b, and 
SB­‍‑2c under three different corrosion scenarios. The study re-
vealed significant relationships between the input parameters 
and the final corrosion probability, which vary considerably 
depending on the scenario considered.

As shown in Figure 4, the importance of individual param-
eters exhibits a clear scenario­‍‑dependent trend. In the LOW 

Fig. 3. Summary of statistics for the analyzed Bayesian models based on Monte Carlo 
simulations
Rys. 3. Podsumowanie statystyk dotyczących analizowanych modeli bayesowskich na podsta-
wie symulacji Monte Carlo
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padku NISKIEGO 
prawdopodobień-
stwa korozji domi-
nującą rolę odgrywa 
parametr Ik (prąd 
korozyjny), któ-
rego wpływ wynosi 
42,5% maksymal-
nego P(kor) w mo-
delach SB‍‑1/SB‍‑2a 
oraz aż 68,4% 
w  modelu SB‍‑2c. 
Istotną rolę odgrywa 
również potencjał 
elektrochemiczny E 
(29,2‒35,4%), pod-
czas gdy pozostałe 

parametry mają relatywnie niewielki wpływ, na poziomie po-
niżej 10%. W scenariuszu ŚREDNIEGO prawdopodobień-
stwa obserwujemy bardziej równomierny rozkład ważności 
parametrów, choć Ik nadal pozostaje najistotniejszym czynni-
kiem (31,8‒32,6%). Najbardziej interesujący wzorzec wystę-
puje w scenariuszu WYSOKIEGO prawdopodobieństwa, gdzie 
wszystkie parametry osiągają ważność przekraczającą 35% 
maksymalnego P(kor), co wskazuje na istotną zmianę charak-
teru procesu korozyjnego.
Rysunek 5 ilustruje bardzo wyraźny wzrost ważności nie-

których parametrów między scenariuszami NISKIEGO i WY-
SOKIEGO prawdopodobieństwa. Najsilniejszy wzrost odno-
towano w przypadku zawartości chlorków (Cl, +848%), oporu 
przeniesienia ładunku (Rt, +772%) i rezystywności betonu (R, 
+392%). Mniejszy, choć wciąż znaczny wzrost wystąpił dla pH 
betonu (+246%) i względnej głębokości rysy (G/c, +206%). 
Najmniej wrażliwe na zmianę scenariusza okazały się parame-
try, które już w scenariuszu NISKIEGO prawdopodobieństwa 
miały dużą ważność, tj. prąd korozyjny (Ik, +61%) i potencjał 
korozyjny zbrojenia (E, +37%).
Przedstawiona na rysunku 6 analiza wpływu liczby parame-

trów na dokładność predykcji ujawnia istotny trend, zgodnie 
z którym wraz ze wzrostem poziomu za-
grożenia korozyjnego zmniejsza się liczba 
parametrów potrzebnych do osiągnięcia 
maksymalnej wartości prawdopodobień-
stwa korozji. W scenariuszu NISKIEGO 
prawdopodobieństwa wszystkie modele 
wymagają aż sześciu parametrów do 
osiągnięcia 90% maksymalnego P(kor). 
W scenariuszu ŚREDNIEGO prawdopo-
dobieństwa modele SB­‍‑1 i SB­‍‑2a redukują 
to wymaganie do pięciu parametrów, pod-
czas gdy modele SB‍‑2b i SB‍‑2c nadal po-
trzebują sześciu parametrów. Największą 
redukcję obserwujemy w scenariuszu WY-
SOKIEGO prawdopodobieństwa, gdzie 
modele SB­‍‑1 i SB­‍‑2a osiągają próg 90% 
już przy trzech parametrach, a modele 
SB‍‑2b i SB‍‑2c przy czterech parametrach.

corrosion proba-
bility scenario, the 
dominant role is 
played by the pa-
rameter Ik (corro-
sion current den-
sity), whose influ-
ence amounts to 
42.5% of the maxi-
mum P(corr) in the 
SB‍‑1/SB‍‑2a mod-
els and as much as 
68.4% in the SB­‍‑2c 
model. The elec-
trochemical poten-
tial E also plays 
a  significant role 
(29.2–35.4%), while the remaining parameters have a rela-
tively minor impact, below 10%. In the MEDIUM probabil-
ity scenario, a more balanced distribution of parameter im-
portance is observed, although Ik still remains the most sig-
nificant factor (31.8–32.6%). The most noteworthy pattern 
occurs in the HIGH corrosion probability scenario, where all 
parameters reach high importance levels exceeding 35% of 
the maximum P(corr), indicating a substantial change in the 
nature of the corrosion process.

Figure 5 illustrates a pronounced increase in the importance 
of certain parameters between the LOW and HIGH corrosion 
probability scenarios. The strongest increases were recorded 
for chloride content (Cl, +848%), charge transfer resistance 
(Rt, +772%), and concrete resistivity (R, +392%). A relatively 
smaller, yet still significant, increase was observed for con-
crete pH (+246%) and relative crack depth (G/c, +206%). The 
parameters least sensitive to scenario changes were those that 
already had high importance in the LOW probability scenario 
– namely, corrosion current density (Ik, +61%) and reinforce-
ment corrosion potential (E, +37%).
The analysis shown in Figure 6 of the influence of the 

number of parameters on prediction accuracy reveals a no-
table trend whereby, as the level of cor-
rosion risk increases, the number of pa-
rameters required to achieve the maxi-
mum corrosion probability decreases. 
In the LOW probability scenario, all 
models require as many as six param-
eters to reach 90% of the maximum 
P(corr). In the MEDIUM probability 
scenario, models SB‍‑1 and SB‍‑2a re-
duce this requirement to five param-
eters, while models SB‍‑2b and SB‍‑2c 
still require six parameters. The most 
significant reduction is observed in 
the HIGH probability scenario, where 
models SB­‍‑1 and SB­‍‑2a reach the 90% 
threshold with only three parameters, 
while models SB‍‑2b and SB‍‑2c require 
four parameters.

probability scenario/
scenariusz prawdopodobieństwa
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Fig. 4. Parameter importance for models: a) SB‍‑1 and b) SB‍‑2c in three corrosion scenar-
ios, i.e., LOW, MEDIUM, and HIGH probability of reinforcement corrosion in concrete
Rys. 4. Ważność parametrów modeli: a) SB‍‑1 i b) SB‍‑2c w trzech scenariuszach korozyj-
nych, tj. NISKIEGO, ŚREDNIEGO i WYSOKIEGO prawdopodobieństwa wystąpienia ko-
rozji zbrojenia w betonie
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Fig. 5. Increase in parameter importance 
for Bayesian models SB‍‑1, SB‍‑2a, SB‍‑2b 
and SB‍‑2c with increasing corrosion threat 
level of reinforcement in concrete
Rys. 5. Zwiększenie ważności parametrów mo-
deli bayesowskich SB‍‑1, SB‍‑2a, SB‍‑2b i SB‍‑2c 
wraz ze wzrostem poziomu zagrożenia koro-
zyjnego zbrojenia w betonie
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Przyrost prawdopodobieństwa korozji 
w zależności od liczby uwzględnionych 
parametrów, przedstawiony na rysunku 
6 jest znacznie szybszy w scenariuszu 
WYSOKIEGO prawdopodobieństwa. 
Przy trzech parametrach modele SB‍‑1 
i  SB­‍‑2a osiągają w  tym scenariuszu 
91,3% maksymalnego P(kor), podczas 
gdy w scenariuszu NISKIEGO prawdo-
podobieństwa zaledwie 54,8%. Podobna 
tendencja, choć z nieco mniejszymi war-
tościami, występuje w przypadku mo-
deli SB­‍‑2b i SB­‍‑2c (86,7% vs 45,2%). 
Jest to ważna obserwacja z praktycz-
nego punktu widzenia, wskazująca, że 
w warunkach wysokiego zagrożenia ko-
rozyjnego wystarczy zmierzyć znacznie 
mniej parametrów, aby uzyskać wiary-
godną predykcję.
Na rysunku 7 porównano wpływ wy-

branych kombinacji parametrów na 
prawdopodobieństwo korozji modeli 
SB­‍‑1 i SB­‍‑2c w trzech różnych scena-
riuszach zagrożenia korozyjnego. Ze-
stawienie tych modeli ujawnia istotne 
różnice w  ich zachowaniu. W modelu 
SB­‍‑1, w scenariuszu NISKIEGO praw-
dopodobieństwa korozji, prąd korozyjny 
(Ik) zapewnia jedynie 42,5% maksymal-
nego prawdopodobieństwa korozji. Na-
tomiast w modelu SB‍‑2c ten sam para-
metr osiąga znacznie większą wartość 
– 68,4%, co wskazuje na silniejszą za-
leżność tego modelu od pojedynczego 
parametru.
W scenariuszu ŚREDNIEGO prawdo-

podobieństwa korozji model SB­‍‑2c cha-
rakteryzuje się wyraźnie mniejszą efek-
tywnością diagnostyczną tych samych 
kombinacji parametrów w porównaniu 
z modelem SB‍‑1, np. kombinacja czte-
rech parametrów (Ik+E+G+Rt) w mo-
delu SB­‍‑2c zapewnia ok. 74,5% maksy-
malnego prawdopodobieństwa korozji, 
podczas gdy w modelu SB­‍‑1 wartość ta 
osiąga ok. 85%.
W  przypadku scenariusza WYSO-

KIEGO prawdopodobieństwa korozji 
różnice między modelami zmniejszają 
się, a oba modele osiągają zbliżoną sku-
teczność przy zastosowaniu czterech pa-
rametrów, przekraczając 95% maksy-
malnego prawdopodobieństwa korozji.

Najbardziej efektywne kombinacje 
parametrów różnią się w zależności od 
scenariusza prawdopodobieństwa koro-
zji. W przypadku NISKIEGO prawdo-

The increase in corrosion probabil-
ity as a  function of the number of in-
cluded parameters, shown in Figure 6, 
is significantly faster in the HIGH prob-
ability scenario. With three parameters, 
models SB­‍‑1 and SB­‍‑2a reach 91.3% of 
the maximum P(corr) in this scenario, 
whereas in the LOW probability sce-
nario they achieve only 54.8%. A similar 
trend, though with slightly lower values, 
is observed for models SB‍‑2b and SB‍‑2c 
(86.7% vs. 45.2%). This is an important 
observation from a practical perspective, 
indicating that under conditions of high 
corrosion risk, considerably fewer pa-
rameters need to be measured to obtain 
a reliable prediction.
The plots in Figure 7 present a compari-

son of the influence of selected parame-
ter combinations on corrosion probability 
for models SB‍‑1 and SB‍‑2c under three 
different corrosion risk scenarios. This 
comparison reveals notable differences in 
their behaviour. In the SB‍‑1 model, un-
der the LOW corrosion probability sce-
nario, corrosion current density (Ik) alone 
yields only 42.5% of the maximum corro-
sion probability. In contrast, in the SB‍‑2c 
model, the same parameter reaches a sub-
stantially higher value of 68.4%, indicat-
ing a stronger dependence of this model 
on a single parameter.

In the MEDIUM corrosion probabil-
ity scenario, the SB‍‑2c model is char-
acterized by noticeably lower diagnos-
tic effectiveness for the same parame-
ter combinations compared to the SB‍‑1 
model. For example, the combination of 
four parameters (Ik + E + G + Rt) in 
the SB‍‑2c model yields approximately 
74.5% of the maximum corrosion prob-
ability, whereas in the SB‍‑1 model this 
value reaches about 85%.
In the HIGH corrosion probability sce-

nario, the differences between the models 
diminish, and both achieve similar effec-
tiveness when using four parameters, ex-
ceeding 95% of the maximum corrosion 
probability.
The most effective parameter combi-

nations vary depending on the corrosion 
probability scenario. In the LOW prob-
ability scenario, the best results were ob-
tained for the combination Ik + E + G in 
the SB­‍‑2c model (78.9%) and Ik + E + G 
+ pH in the SB‍‑1 model, where a value of 
approximately 80% was achieved. For the 

Fig. 6. Increase in probability P(corr) de-
pending on the number of model param-
eters: a) SB‍‑1; b) SB‍‑2c
Rys. 6. Przyrost prawdopodobieństwa P(kor) 
w zależności od liczby parametrów modelu: 
a) SB‍‑1; b) SB‍‑2c
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Fig. 7. Influence of parameter combina-
tions on the probability of corrosion P(corr) 
for models: a) SB‍‑1; b) SB‍‑2c
Rys. 7. Wpływ kombinacji parametrów na 
prawdopodobieństwo korozji P(kor) w przy-
padku modeli: a) SB‍‑1; b) SB‍‑2c
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podobieństwa, najlepsze wyniki osiągnięto przy kombinacji 
Ik+E+G w modelu SB­‍‑2c (78,9%) oraz Ik+E+G+pH w mo-
delu SB­‍‑1, gdzie uzyskano wartość około 80%. W przypadku 
ŚREDNIEGO prawdopodobieństwa najbardziej efektywną 
kombinacją okazało się zestawienie Ik+E+G+Rt, które w obu 
modelach zapewniło wynik 74,5–85%. Natomiast w scenariu-
szu WYSOKIEGO prawdopodobieństwa już sama kombinacja 
trzech parametrów – Ik+E+G była wystarczająca, aby osiąg-
nąć ponad 88% maksymalnego prawdopodobieństwa korozji.
Szczegółowa analiza różnic między modelami wskazuje, że 

modele SB‍‑1 i SB‍‑2a wykazują większą czułość na ograni-
czoną liczbę parametrów niż modele SB‍‑2b i SB‍‑2c. Różnica 
ta jest najwyraźniejsza w scenariuszach NISKIEGO i ŚRED-
NIEGO prawdopodobieństwa, natomiast zmniejsza się w sce-
nariuszu prawdopodobieństwa WYSOKIEGO. Sugeruje to, że 
w warunkach wysokiego zagrożenia korozyjnego struktura mo-
delu ma mniejsze znaczenie, natomiast kluczowa jest jakość 
danych diagnostycznych.

Podsumowanie i wnioski
W artykule opisano cztery modele sieci bayesowskich – 

SB­‍‑1, SB­‍‑2a, SB­‍‑2b oraz SB­‍‑2c, służących probabilistycznej 
ocenie zagrożenia korozją zbrojenia w betonie na podstawie 
siedmiu kluczowych parametrów. Jako miarodajne parame-
try wybrano: potencjał korozyjny zbrojenia E; rezystywność 
betonu R; pH cieczy porowej betonu; zawartość chlorków Cl 
w betonie; gęstość prądu korozyjnego Ik w zbrojeniu; opór 
przeniesienia ładunku Rt na granicy faz stalowe zbrojenie 
– ciecz porowa betonu oraz względną głębokość zarysowa-
nia betonu G/c. W modelach zdefiiniowano warunkowe tab-
lice prawdopodobieństw (CPT), bazujące na danych litera-
turowych i wiedzy eksperckiej. Zbudowana struktura modeli 
ewoluuje od klasycznego SB­‍‑1 z niezależnym traktowaniem 
zmiennych, przez modele SB­‍‑2a i SB­‍‑2b wprowadzające agre-
gację w blokach tematycznych i współczynniki redukcyjne 
aż po model SB­‍‑2c, który dodatkowo uwzględnia warunek 
decydujący: jeśli blok POL wskazuje na stan pasywny zbro-
jenia (POL = 0), to prawdopodobieństwo korozji P(kor) = 0. 
W celu porównania modeli zastosowano symulację Monte 
Carlo (10 000 próbek na scenariusz), analizując trzy poziomy 
zagrożenia: niskie, średnie i wysokie. Oceniano rozkłady 
prawdopodobieństwa P(kor), odchylenie standardowe, czę-
stość wyników skrajnych oraz czułość modeli na eliminację 
poszczególnych parametrów.
Wyniki analizy ujawniły istotne różnice między modelami 

w zależności od scenariusza. W warunkach niskiego praw-
dopodobieństwa korozji największe rozbieżności dotyczyły 
wartości średnich P(kor) – model SB­‍‑2c wykazywał najniż-
szą średnią (7,0%) i najwyższy odsetek wyników bliskich 
zeru (49,14%), co jest efektem działania warunku decydują-
cego. W tym samym scenariuszu modele SB­‍‑1 i SB­‍‑2a dawały 
znacznie wyższe oszacowania (18,8%), co może prowadzić 
do przeszacowania ryzyka. W scenariuszu średniego zagro-
żenia różnice między modelami były mniejsze, choć nadal 
zauważalne – modele SB­‍‑1 i SB­‍‑2a dające wartości bliskie 
91%, podczas gdy SB­‍‑2b i SB­‍‑2c – 80%. W scenariuszu wy-

MEDIUM probability scenario, the most effective combination 
proved to be Ik + E + G + Rt, which in both models produced 
results in the range of 74.5–85%. In the HIGH probability sce-
nario, the combination of just three parameters – Ik + E + G 
– was already sufficient, reaching over 88% of the maximum 
corrosion probability.

A detailed analysis of the differences between the models 
indicates that SB‍‑1 and SB‍‑2a models exhibit greater sen-
sitivity to a  limited number of parameters than SB‍‑2b and 
SB­‍‑2c models. This difference is most pronounced in the 
LOW and MEDIUM probability scenarios, while it decreases 
in the HIGH probability scenario. This suggests that under 
high corrosion risk conditions, the model structure becomes 
less significant, and the quality of diagnostic data becomes 
the decisive factor.

Summary and Conclusions
In this study, four Bayesian network models–SB‍‑1, SB‍‑2a, 

SB‍‑2b, and SB‍‑2c–were developed to provide a probabilis-
tic assessment of reinforcement corrosion risk in concrete 
based on seven key parameters. The selected diagnostic pa-
rameters were: reinforcement corrosion potential (E), con-
crete resistivity (R), concrete pore solution pH (pH), chloride 
content in concrete (Cl), corrosion current density (Ik) in the 
reinforcement, charge transfer resistance (Rt) at the steel re-
inforcement – concrete pore solution interface, and the rela-
tive crack depth in concrete (G/c). In the models, conditional 
probability tables (CPTs) were defined based on literature data 
and expert knowledge. The structure of the models evolves 
from the classical SB‍‑1, which treats variables independently, 
through models SB‍‑2a and SB‍‑2b – which introduce thematic 
block aggregation and reduction coefficients – to the SB‍‑2c 
model, which additionally incorporates a decisive condition: 
if the POL block indicates a passive state of reinforcement 
(POL = 0), then the corrosion probability P(corr) = 0. To com-
pare the models, Monte Carlo simulation (10,000 samples per 
scenario) was applied, analyzing three risk levels: low, me-
dium, and high. The assessment considered corrosion prob-
ability distributions P(corr), standard deviations, frequency 
of extreme values, and model sensitivity to the elimination 
of individual parameters.
The results revealed significant differences between mod-

els depending on the scenario. Under low corrosion prob-
ability conditions, the largest discrepancies concerned the 
mean P(corr) values – model SB‍‑2c showed the lowest 
mean (7.0%) and the highest proportion of near­‍‑zero results 
(49.14%), resulting from the decisive condition. In the same 
scenario, models SB‍‑1 and SB‍‑2a yielded much higher es-
timates (18.8%), which may lead to risk overestimation. In 
the medium‍‑risk scenario, differences between models were 
smaller yet still noticeable – SB‍‑1 and SB‍‑2a provided val-
ues close to 91%, while SB­‍‑2b and SB­‍‑2c gave 80%. In the 
high‍‑risk scenario, all models produced convergent results, 
with P(corr) values close to 100%, suggesting that under 
strong environmental influence, the choice of model is of 
secondary importance.
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sokiego zagrożenia wszystkie modele wykazały zbieżność 
wyników, osiągając wartości P(kor) bliskie 100%, co suge-
ruje, że przy silnym oddziaływaniu środowiskowym wybór 
modelu ma drugorzędne znaczenie.
Zastosowana analiza wrażliwości pokazała, że prąd koro-

zyjny Ik pozostaje najważniejszym parametrem w każdej sytu-
acji, przy czym w modelu SB­‍‑2c jego wpływ osiąga aż 68,4% 
w scenariuszu niskiego zagrożenia. Wraz ze wzrostem zagro-
żenia zwiększa się również znaczenie parametrów Cl, Rt i R, 
co potwierdza ich związek z postępującą degradacją. Z kolei 
analiza efektywności predykcji przy ograniczonej liczbie para-
metrów wykazała, że przy dużym zagrożeniu wystarczą 3 lub 
4 parametry do uzyskania wiarygodnych wyników, natomiast 
w scenariuszach o mniejszym ryzyku wymagane jest uwzględ-
nienie co najmniej 6.
Na podstawie przeprowadzonych badań stwierdzono, że roz-

budowany model SB‍‑2c jest najbardziej elastyczny i reali-
styczny, trafnie różnicuje poziomy zagrożenia, unika fałszy-
wych alarmów przy niskim ryzyku korozji oraz poprawnie 
odwzorowuje fizykę procesu korozji. Jego zastosowanie może 
być przydatne w diagnostyce korozyjnej konstrukcji żelbeto-
wych, w której kluczowa jest precyzja oceny i optymalizacja 
działań naprawczych.

The applied sensitivity analysis showed that corrosion cur-
rent density (Ik) remains the most important parameter in all 
cases, with its influence in the SB‍‑2c model reaching as much 
as 68.4% in the low­‍‑risk scenario. As the risk level increases, 
the importance of parameters Cl, Rt, and R also rises, con-
firming their relationship with progressive degradation. Fur-
thermore, the analysis of prediction efficiency with a limited 
number of parameters demonstrated that under high‍‑risk con-
ditions, reliable results can be obtained with only three or four 
parameters, whereas in lower‍‑risk scenarios, at least six param-
eters are required.

Based on the conducted research, it can be concluded that 
the extended SB‍‑2c model is the most flexible and realistic. 
It accurately differentiates between risk levels, avoids false 
alarms in low corrosion risk conditions, and correctly reflects 
the physics of the corrosion process. Its application can be 
valuable in the corrosion diagnostics of reinforced concrete 
structures, where precision in assessment and optimization of 
repair actions are of key importance.
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