
17

NAUKAW BUDOWNICTWIE – WYBRANE PROBLEMY

2/2024 (nr 618) ISSN 0137-2971, e-ISSN 2449-951X www.materialybudowlane.info.pl

H amilton’s principle is a generalization of the
principle of minimum potential energy in the case
of linear dynamics [1]. This generalisation is
essentially based on building a functional and then

on demanding that this functional meets the required minimum
conditions. However, it is possible to omit the stage of building
the functional using, by analogy, the virtual power principle,
also called the principle of virtual time-work [1, 2]. Moreover,
the subject of extended Hamilton’s principle was discussed in
other papers, i.e. [3 – 7].

Thermodiffusion, as a branch of solid mechanics, includes
studies on the coupling of the deformation field, the
temperature and concentration of the diffusion substance. In
thearea of civil engineering, many phenomena in the scope of
thermodiffusion can be distinguished. Practical examples
include thermochemical surface treatments such as nitriding,

carburising or boriding (see the photo below). Under elevated
temperature conditions, unilateral thermodiffusion occurs, i.e.
diffusion of the gas into the solid. Various types of coatings
are also used for the surface treatment of metals. Then, the
process of interdiffusion takes place. In both cases,
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Abstract.Variables in time of temperature field and concentration
of diffusion substance field cause deformation of the solid. There
is also a reverse process, i.e., deformation of the solid causes ther-
mal energy (and its conduction) and mass flow. The mentioned
processes are coupled together and thermodiffusion deals with the
study of this coupling. In the paper the problem of initial – boun-
dary of the continuous center with moderate temperature change
and moderate change in concentration of diffusion substance was
considered. Such an issue can be written with conjugate differen-
tial equations, extended thermal, diffusion and the theory of ela-
sticity equations supplemented with boundary and initial condi-
tions. It is possible to described such an issue by the integral form
using for this purpose the above differential equations and the
equation of a virtual power in the space–time domain. It has been
shown in the work that the equation of a virtual power, derived
from the above differential equations, actually leads to the gene-
ralized Hamilton’s principle. The equation of a virtual power and
Hamilton’s principle in the form shown in the work cannot be
expressed as a minimum of a well-defined functional. It is known,
that such formulation allows the use of direct methods. It is easy
to show that the elasticity, thermal conductivity and diffusion equ-
ations can be obtained from the presented variation principle.
Keywords: Hamilton’s principle; coupled thermodiffusion;
mechanics of continuous medium; thermodynamics of
irreversible processes.

Streszczenie. Zmienna w czasie temperatura i stężenie substan-
cji dyfundującej powodują deformację ciała stałego. Istnieje
również proces odwrotny, czyli odkształcenie ciała stałego po-
woduje wytworzenie energii cieplnej oraz przepływ masy. Wy-
mienione procesy są ze sobą sprzężone, a badaniem tego sprzę-
żenia zajmuje się termodyfuzja. W artykule rozpatrzono zagad-
nienie początkowo-brzegowe ośrodka ciągłego, geometrycznie
i fizycznie liniowego, przy umiarkowanej zmianie temperatury
i stężenia substancji dyfuzyjnej. Zagadnienie takie można opi-
sać za pomocą sprzężonych równań różniczkowych, rozszerzo-
nego równania przewodnictwa cieplnego, rozszerzonego równa-
nia dyfuzji i równań teorii sprężystości uzupełnionych o warun-
ki brzegowe i początkowe. W artykule wykazano, że równanie
czasopracy wirtualnej, wyprowadzone na bazie równań różnicz-
kowych, prowadzi do uogólnienia zasady Hamiltona. Równania
czasopracy wirtualnej i zasady Hamiltona nie da się wyrazić
w postaci minimum dobrze zdefiniowanego funkcjonału. Wia-
domo, że takie sformułowanie pozwala na zastosowanie metod
bezpośrednich. Łatwo wykazać, że z przedstawionej zasady wa-
riacyjnej można wyprowadzić równania sprężystości, przewod-
nictwa cieplnego i dyfuzji.

Słowa kluczowe: zasada Hamiltona; sprzężona termodyfuzja;
mechanika ośrodków ciągłych; termodynamika procesów
nieodwracalnych.
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The progress of various thermo-chemical treatment processes;
diffusion layer composed of: carbon (a); nitrogen (b); iron boride
(c) obtained on a steel plate [http://www.labmat.pw.plock.pl]
Przebieg różnych procesów obróbki cieplno-chemicznej; warstwa dy-
fuzyjna złożona z: węgla (a); azotu (b); borków żelaza (c) uzyskana
na płytce stalowej [http://www.labmat.pw.plock.pl]
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understanding the complex transport processes allows for
better surface properties of the protective layer. This enables
the optimisation of the mechanical and chemical parameters
of these materials, as well as the prediction of their durability.

In construction, a significant group of thermodiffusion
phenomena are thermo-humidity processes, which are the
domain of building physics. In the era of rationalisation of
energy consumption, the flow of moisture and heat through
the building envelope is one of the main design and
execution concerns of civil engineers. The diffusive flow of
water vapour can cause many unfavourable effects, such as
biological and chemical corrosion, which significantly
deteriorates the physical and mechanical properties of
materials.

Knowledge of the complex processes of mass and heat flow
also makes it possible to model the behaviour of structures in
emergency situations such as fire, flood or nuclear failure. The
response of structural elements to increasing ambient tempera-
tures is also important when assessing their fire resistance. The
fluctuating temperature range affects the physical characteristics
of the material and water (or water vapour). In porous materials,
the internal pore structure can undergo modifications resulting
in a change in its basic properties. In the case of concrete, it is
additionally subject to dehydration, which is manifested in
heat bleed and free water sources.

Uncontrolled thermodiffusion can have very negative
effects. An example is the behaviour of wood in an
atmosphere with dynamically changing humidity. As the
material dries, it shrinks, and the consequence of
inhomogeneous moisture distribution within the element is
the development of deformations and stresses. However, if
the diffusion occurs slowly, the moisture distribution inside
the element can be considered uniform and the material is
free of internal drying stresses. Modelling the moisture
distribution in the dried material or simulating the
phenomena occurring during the drying process makes it
possible to identify the drying phases in which undesirable
consequences may occur.

In this paper, Hamilton's principle is generalised to the case
of coupled thermodiffusion in deformable solids. It has been
shown that the virtual time-work equation leads to a
generalization of Hamilton's principle.

The issue of initial-boundary thermodiffusion
in solids

The subject under consideration is a solid occupying area� with boundary surface ∂�. The motion was studied in the
time interval t ∈ < 0, ∞). The solid in a non-deformed and
strain-free conditions is at a constant temperature T0 = T(X, 0)
and is characterised by a constant concentration of the
diffusion substance C0 = C(X, 0). Under the influence of
external and/or internal forces, the solid will undergo
displacements ui(X, t), deformations εi,j(X, t), stress will arise
σi,j (X, t), and the temperature will change by θ(X, t), while the
diffusion substance’s concentration will be altered by c(X, t). A
continuous medium is analysed under small changes in
temperature and the diffusion substance concentration.

In order to derive the equations describing the issue under
consideration, the Helmholtz free energy function was
developed into a in the natural state environment and then
differentiated with respect to the deformations:

(1)

Taking into account the assumptions made in the natural
state (stresses and strains equal zero) and introducing the
applied symbols, the following formula is obtained:

(2)

Due to the assumption of infinitesimal deformations, a small
relative temperature increment and a small increment in the
concentration of the diffusion substance, the higher-order
quantities can be omitted in expression (2), obtaining the
following form of the constitutive thermodiffusion equation:

σij = Cijklεkl – αijθ – βijc (3)
where:
Cijkl – component of the tensor describing material parameters related to
mechanical properties of the material;
αij – component of the tensor describing material parameters related to
mechanical and thermal properties of the material;
βij – component of the tensor describing material parameters related to the
mechanical and diffusional properties of the material.

It is worth noting that in the case of a homogeneous isotropic
solid, the formula (3), after taking into account the
aforementioned assumptions, will take the following form:

σij = 2µεij + (λe – γTθ – γCc)δij (4)
gdzie:
µ [N/m2], λ [N/m2], γT [N/m2], γC [Nm/kg] – material constants;
δij – Kronecker delta.

The equilibrium equations, describing the relation between
stresses, mass forces, and inertia forces can be expressed as
follows:

σij,i + ρfj – ρüj = 0 (5)
where:
ρ – volumetric density of the solid [kg/m3].

Using the first and second principle of thermodynamics,
the entropy balance equation and Onsager's relationships
for laminar thermodynamic flows, the extended thermal
conductivity and diffusion equations can be derived in the
following form:

kθ,ii – θ
•
cε,c – T0(γTė + bċ) + W = 0 (6)

where:
k [W/mK], cε,c [J/Km3], γT [N/m2K], b [J/kgK] – material constants;
W [W/m3] – capacity of internal heat sources.
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DTθ,ii + Dεe,ii + Dcc,ii – ċ + τ = 0 (7)
where:
DT [kg/msK], Dε [kg/ms], Dc [m2/s] – material constants;
τ [kg/m3•s] – capacity of internal mass sources.

These equations are complemented with initial and boundary
conditions, which can be expressed in the following form:

● intial conditions:
ui(X, t) = u0i(X, t);
u•

i(X, t) = u•
0i(X, t);

T(X, t) = T0(X, t); (8)
C(X, t) = C0(X, t);

(X, t) ∈ = �0 × {0};
i = 1, 2, 3

● static-type boundary conditions:
p̂i(X, t) = σji(X, t)nj;

(X, t) ∈ ∂�p × < 0, ∞ >; (9)
i = 1, 2, 3

● geometric-type boundary conditions:
ui(X, t) = ûi(X, t);

(X, t) ∈ ∂�u × < 0, ∞ >; (10)
i = 1, 2, 3

● thermal-type boundary conditions (i.e. condition of
type II):

qi(X, t) = q̂i (X, t);
(X, t) ∈ ∂�T2 × < 0, ∞ >; (11)

i = 1, 2, 3
● diffusion-type boundary conditions (i.e. condition of

type II):
ηi(X, t) = η̂i (X, t);

(X, t) ∈ ∂�C2 × < 0, ∞ >; (12)
i = 1, 2, 3

Equations of virtual time-work
Equations (4) ÷ (7) constitute a system of coupled partial

differential equations with respect to space and time
variables, formulated within the framework of the theory of
mechanics of continuous media and thermodynamics of
irreversible processes. In order to solve the coupled
thermodiffusion problem, using for example the time-space
element method, a global formulais necessary covering the
whole solid under consideration and the whole time interval.
One way to transform the local formula into a global formula
is to use the virtual time-work method, which is done by
analogy with the virtual work equation [2]. Based on the
equilibrium equations and the extended thermal conductivity
and diffusion equation, the following integral equations were
derived:

(13)

(14)

(15)

Then, the following substitutions are made in expressions
(13), (14), (15):

θ =def T0ġ (16)

c =def C0h (17)

The values δu, δg, δh denote variations of the functions u,
g, h.These are functions satisfying kinematic, thermal and
diffusion boundary conditions and are appropriately
differentiated with respect to spatial variables and time. Using
the boundary conditions (9) ÷ (12), equation (4), and making
appropriate transformations, the virtual time-work equations
are obtained in the following form:

(18)

(19)

(20)

The individual integrals of equations (18) ÷ (20) denote
the time-work or time-energy expressed in J•s = N•m•s [1].
Equations (18) ÷ (20) represent the principle of virtual time-
work. The couplings of deformations εij, temperature θ
(described by function g), and diffusion c (described by
function h) can be observed. The definition of the virtual
time-work equation can be extended to the issue of coupled
thermodiffusion as follows: the generalised forces
(originating from external interactions in the form of surface
forces, thermal and diffusion influences) distributed on the
hypersurface bounding the space-time object and the
internal forces (whose sources are mass forces, internal heat,
and mass sources) acting in the four-dimensional region,
perform on the virtual quantities δui, δg, δh time-work equal
to the internal time-energy accumulated in the analysed
region.

Generalizing Hamilton’s principle
The following designations are introduced:
■ to the equation (15):

(21)

(22)

(23)
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■ to the equation (16):

(24)

(25)

(26)

■ to the equation (17):

(27)

(28)

(29)

The equations of virtual time-work take the form:

(30)

(31)
(32)

where:
χ – the minimised functional, the so-called Lagrange function.

When external impulses (stress, temperature, diffusion) are
conservative (i.e. independent of displacements, temperature,
and the diffusion of the medium under consideration), then the
time-work equations are as follows:

(33)

(34)

(35)

Assuming that the variations δui, δg, δh vanish at time t0 (the
beginning of observation) and t1 (the end of observation,
analysis), the integral of the Lagrange function can be
expressed in the form:� = � – � + 1/2 W (36)

In the time interval t0, t1, this expression reaches an
extreme value in the case of a 'real' motion relative to the
allowed virtual displacements δui, virtual temperature
(expressed as function δg) and virtual diffusion (expressed
as a function δh), vanishing firstly at times t0 i t1 at all points
of the solid and secondly at the boundary surface ∂�u, ∂�T,
∂�C, where displacements, temperature (expressed by g) and

diffusion (expressed by h) are given during the entire period
< t0, t1 >. This principle means that among all dynamic paths
that satisfy the boundary conditions ∂�u, ∂�T, ∂�C at each
time instant t, and which start and end with the real
conditions at any two times t0 and t1 at each solid point, the
real dynamic path is distinguished from the others by the fact
that the Lagrange function (36) reaches an extremum
(minimum).

Conclusion
Using the analogy presented in the monographs by Fung [8],

Nowacki [9, 10], Kączkowski [11] and Podhorecki [2], the
Hamilton's principle was extended to include components
related to diffusion and the coupling of the mechanical,
thermal and diffusion fields.

The virtual time-work equations (18) ÷ (20), and thus also
the Hamilton's principle (33) ÷ (35), cannot be expressed
explicitly as a minimum of a well-defined functional.
However, it is known that such formulas allow the use of
direct methods, such as the time-space element method or any
other method to solve a system of ordinary coupled
differential equations. From the variation principle (18) ÷
(20) the coupled thermodiffusion equations in deformable
continuous media can be obtained.
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